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A B S T R A C T

A microstructure and deformation mechanism based fatigue crack initiation and life prediction model, which
links microstructure variability of a polycrystalline material to the scatter in fatigue life, is validated using an
uncertainty quantification and propagation framework. First, global sensitivity analysis (GSA) is used to identify
the set of most influential parameters in the fatigue life prediction model. Following GSA, the posterior
distributions of all influential parameters are calculated using a Bayesian inference framework, which is built
based on a Markov chain Monte Carlo (MCMC) algorithm. The quantified uncertainties thus obtained, are
propagated through the model using Monte Carlo sampling technique to make robust predictions of fatigue life.
The model is validated by comparing the predictions to experimental fatigue life data.

1. Introduction

The majority of mechanical failures can be attributed to fatigue,
which is a complex problem involving many independent factors that
evolve during cyclic loading. Fatigue crack initiation in polycrystalline
materials can be attributed to the heterogeneous microstructure
forming complex stress states resulting in strain heterogeneities and
localization. Additionally, cyclic loading manifests in deformation
mechanisms leading to cyclic slip irreversibilities, which ultimately
increase stress concentration and thereby lead to the formation of
cracks. Many empirical [1,2] and physics-based models [3–6] have
been proposed to predict fatigue life in polycrystalline materials.
Uncertainties exist in every model, and before such computational
models are employed (to predict the life of components), careful
attention must be given to understand the degree in which these
uncertainties influence the predicted quantity of interest (QoI), in this
case the fatigue life. Rigorous uncertainty quantification for validation
purposes is a pre-requisite for such predictive models to be used in a
production environment. The current work focuses on identifying,
quantifying and propagating the uncertainties in a microstructure
based life prediction model [6] for the purpose of validating the model.
In this study, model validation is performed based on:

i) Global sensitivity analysis (GSA) to identify the set of non-
influential parameters in a factor-fixing setting, which in turn

helps in reducing the computational cost of the uncertainty
quantification problem [7,8].

ii) Bayesian inference to quantify uncertainties in the set of influential
parameters determined using GSA [8–10].

iii) Monte-Carlo sampling to propagate the quantified uncertainties to
obtain distribution of predicted life, which will be used in validat-
ing the model's predictions [8,10].

Researchers in various sub-disciplines of computational materials
science and engineering including computational solid (and particle)
mechanics [10,11], computational fluid dynamics [12], molecular
dynamics (MD) [13,14], etc., have integrated uncertainty analysis into
their modeling framework. Over the past decade, uncertainty quanti-
fication has been successfully applied to fatigue crack growth models
pertaining to both metals [15–19] and composites [20,21]. Zhang and
Mahadevan [15] used Bayesian inference technique to quantify un-
certainties via statistical distribution parameters in two competing
crack growth models for metals. Cross et al. [16] used a hierarchical
Bayesian inference framework to quantify uncertainties in equivalent
initial flaw size and crack growth rate parameters, and hence improved
the predictive capabilities of their fatigue crack growth model.
Sankararaman et al. [19] used a Bayes network to propose a metho-
dology for uncertainty quantification and model validation in fatigue
crack growth analysis. Chiachio et al. [21] used a full Bayesian
approach to quantify uncertainties of a set of five damage mechanics
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models for composites and the best of the models was chosen based on
an information-theoretic approach by calculating the relative prob-
ability amongst all other candidate models. The metal fatigue crack
growth models discussed above are empirical in nature and are
independent of the microstructure of the material, which has a great
influence in crack initiation [3–6] and microstructurally small fatigue
crack growth [22]. The fatigue life prediction framework which is used
in the current study [6], differs from the above mentioned crack growth
models in the following four ways. First, it is a microstructure based
framework, where the morphological and crystallographic heterogene-
ities in the microstructure are considered and an attempt is made to
link the variability of the microstructure with the fatigue life calculated.
Second, it is not fully empirical in nature, as the model takes into
consideration the physics of underpinning deformation mechanisms,
which lead to cyclic slip irreversibilities during fatigue, thereby
addressing fatigue at the slip system length-scale. Third, it considers
complex stress states from grain-to-grain interactions. Finally, the
model predicts number of cycles for fatigue crack initiation rather than
calculating crack growth with number of cycles. While dealing with
models that predict fatigue crack initiation, a phenomenon, which is
dependent on both the local microstructure and deformation mechan-
isms, the number of epistemic uncertainties increases due to the
complexities involving length-scale dependent deformation mechan-
isms. These uncertainties need to be quantified, in order to validate the
model and identify an appropriate applicability regime. There is a great
amount of work that needs to be done in quantifying uncertainties in
complex physics based models and hence improving the predictive
capabilities of such models [23].

Several micro-mechanical fatigue crack initiation models have been
developed which take into consideration the heterogeneities within the
microstructure and various parameters that quantify length-scale
dependent deformation mechanisms [3–6]. The energy based model
of Tanaka and Mura [3] takes into consideration parameters like the
frictional stress, cyclic slip irreversibility and the specific fracture
energy of the material. The fatigue crack initiation framework devel-
oped by Sangid et al. [4,5] takes into consideration, width of a
persistent slip band (PSB), dislocation density, γ' volume fraction,
grain boundary (GB) energies, extrusion height at intersection of PSB-
GB, stacking fault and anti-phase boundary energies. There are
uncertainties associated with all the parameters mentioned above,
some of which are difficult to measure using experiments. Although
these models provide great insights into understanding how certain
microstructural features and competing deformation mechanisms lead
to initiation of fatigue cracks, systematic sensitivity and uncertainty
analysis, in an attempt to validate such physics-based models, is still
lacking [23]. The current work fills this gap by using a sensitivity and
uncertainty analysis framework, in order to validate a microstructure
and deformation mechanism based life prediction model [6]. Although
validation of the model is a driving motivation, the main contribution
of the current work is the application of sensitivity and uncertainty
analysis to a microstructure and deformation dependent fatigue life
prediction model.

The rest of the paper is organized as follows: In Section 2, we
provide a brief overview of the microstructure dependent fatigue life
prediction model and an overview regarding how the sensitivity and
uncertainty analysis are performed on the model. Section 3 lists all the
uncertainties that prevail in the model and categorize the uncertainties.
It also provides an overview of the uncertainty analysis framework used
in this study. In Section 4, we show the application of GSA to identify
the most influential parameters in the model, which contribute most to
the uncertainty in the output. Section 5 describes Bayesian framework
and the quantified uncertainties for the set of influential parameters. In
Section 6, we use Monte Carlo simulations to propagate the uncertain-
ties through the model to obtain distributions of life predictions.
Section 7 discusses the dependence of various parameters on applied
strain amplitude, and conclusions are presented in Section 8.

2. Overview of the microstructure based life prediction
model

As uncertainty quantification and propagation are the main focus of
the current work, we only present a brief overview of the PSB energy
based life prediction model (or PSB model) in this section. For a
detailed description of the model, please refer to Yeratapally et al. [6].
It must be noted that the PSB model takes information on state
dependent variables like the resolved shear stress (τα), normal stress
(σN

α ), back stress (χα), critical resolved shear stress (gα) and accumu-
lated strain in a slip system (γα), output from crystal plasticity finite
element (CPFE) simulations (of one-cycle loading) done on a statisti-
cally equivalent microstructure (SEM), which is sufficiently large to
capture the statistics of microstructural attributes (like mean and
variance of grain size distribution and percentage of twins in the
microstructure) and strength properties (elastic modulus, yield
strength, hardening response and reverse plasticity upon unloading)
pertinent to the material of interest, RR1000, a powder processed
superalloy developed by Rolls-Royce plc, is used in this study. This
stress-strain information along with the GB energetics is used as input
to the PSB model, to predict the potential location and number of
cycles for crack initiation. Although CPFE is an integral part of the
fatigue framework, the focus of the current work is to quantify the
uncertainties in the PSB model itself. Quantifying all the uncertainties
in CPFE framework requires information about how the stress and
strain evolve relative to the microstructure with applied loading, which
is beyond the scope of the current work.

Fig. 1 displays a schematic of a PSB traversing a low angle GB (or
LAGB) and impinges upon a high angle GB (for example an annealing
twin boundary), where the dislocations pile-up, form extrusions at the
boundary plane, and thereby increase the stress concentrations at the
GB, which could potentially lead to crack initiation.

With this established view of a PSB (based on experimental
observations), we define the energy of a PSB as follows:
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where ∂Xi is the incremental slip within PSB, f is the volume fraction of
the γ' precipitate phase in the nickel-base superalloy, γSFE is the
stacking fault energy of the γ phase, γAPBE is the anti-phase boundary

energy of the γ' precipitate, neff
layers is the number of effective layers

contributing to SFE or APBE, and it decreases with a decrease in the
degree of crystallinity, DC, in the PSB (see Section 3.3 for further
explanation on DC), L is the length of the PSB, Eslip−GB

γ−MD is the energy

required for a dislocation to transmit across a GB, next−GB
dis represents

the number of dislocations forming an extrusion at the PSB-GB
intersection, b is the magnitude of the Burgers vector (which represents
the amount of lattice distortion due to the glide motion of a single
dislocation in a crystalline lattice), h is the width of the PSB, ∆τCPFEM

α is
applied cyclic stress on the PSB, σhardening accounts for the hardening
within the PSB, σpile−up is the pile-up stress at the intersection of the

PSB and the GB, and nlayers is the number of slip planes within the PSB,
which is related to the PSB width, h, as n =layers h

b .

Within the energy expression of PSB, the terms next−GB
dis , σpile−up,

σstroh, σhardening are calculated using the following expressions:
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σ = 0. 45μb ρhardening (5)

where k is a proportionality constant, m is the rate sensitivity
parameter, τα is resolved slip-system stress, χα is back stress on a slip
system and gα is the critical resolved shear stress, EGB

trans is the
dislocation transmission energy for distinct GBs [4], µ is rigidity
modulus, v is the Poisson's ratio, γα is accumulated strain in the slip-
system which is calculated from the CPFE simulations, n is the number
of cycles, noffset is the threshold number of loading cycles after which
extrusions start to form at the PSB-GB intersection and ρ is the
dislocation density within the PSB. It must be noted that the formula-
tions of σpile−up, σstroh and σhardening (shown in Eqs. (3–5)) have been
adopted from the work of Schouwenaars et al. [24], Stroh [25] and
Taylor [26], respectively.

Failure (e.g. fatigue crack initiation) would occur when the energy
of the PSB would attain its minimum value. Mathematically speaking,
cracks would initiate when the following two conditions are satisfied:

dE
dX

= 0 and
d E
d X

> 0PSB

i

2
PSB

2
i (6)

The PSB model is used to link the variability in microstructure of a
polycrystalline alloy to the scatter in its fatigue life, by taking into
account the (i) complex stress state within the microstructure, (ii)
energetics of deformation mechanisms occurring at a slip-system
length scale. The variability in microstructure is simulated by generat-
ing several SEMs based on the statistics of microstructural attributes
obtained from electron backscatter diffraction (EBSD) scans of the
material, as described in detail in Yeratapally et al. [6]. The CPFE
framework is used to solve for the complex stress and strain fields
developed within the SEMs, when a cyclic load is applied. The PSB
model takes the output from the CPFE simulation, in the form of the
micromechanical stresses and strains, as input and deterministically
calculates fatigue life on a grain-by-grain basis (assuming that a PSB
exists in all the grains), and in doing so determines the weakest-link
grain (the grain with the minimum number of cycles to failure) within
the microstructure, which is determined to be the location where a
fatigue crack is most likely to initiate. In summary, for each SEM and a
set of model parameters, the PSB model links the SEM with one fatigue
life (or number of cycles to failure) data point.

The PSB model predicted that fatigue crack initiation is favored to
occur at the intersection of a persistent slip band (PSB) and twin

boundaries, specifically when the PSB forms in a large grain [6].
Furthermore, the twins (where the PSB model predicts cracks are likely
to initiate) were subjected to significant amount of normal stress
(compared to the resolved shear stress), thereby implying that normal
stress plays a significant role in crack initiation by acting as a mode I
crack driving force unzipping the PSB. Additionally, the PSB model
determined that the plastic strain accumulation (due to dislocation
pileup) and elastic stress anisotropy (due to lattice mismatch at grain
boundaries) act in concert to the aforementioned attributes to influence
fatigue crack initiation [6]. The fatigue model delivers valuable insights
regarding the location of crack initiation. The fatigue model has several
parameters that possess inherent uncertainties, which need to be
identified, quantified and propagated through the model, for the
purpose of validating the fatigue life predictions and extending the
applicability of the model in a production environment.

The current study employs GSA to identify the set of influential
parameters among all the parameters in the fatigue life prediction
model. Following GSA, a full Bayesian inference framework, which uses
Markov chain Monte Carlo (MCMC) algorithms, is used to quantify the
uncertainties in the set of influential parameters. The quantified
uncertainties of the parameters are forward propagated through the
model, in order to make predictions of fatigue life, using Monte Carlo
sampling. This helps to quantitatively relate the input uncertainties to
the output. A brief overview of the application of the sensitivity and
uncertainty analysis to the fatigue model is shown in Fig. 2.

3. Uncertainties in the model

The presence of uncertainties in a computational model can be
attributed to many factors including, but not limited to: (i) measure-
ment errors, (ii) numerical errors, (iii) missing physics due to
simplifying assumptions, etc. Although uncertainties arise from several
sources, they are generally categorized as either aleatory or epistemic
[27–29]. Aleatory uncertainty arises due to the randomness due to
inherent variability in the system [27–29], for instance in polycrystal-
line materials such type of an uncertainty includes the randomness in
size, shape and orientation attributes of nearest neighbor grains [23].
This type of uncertainty is irreducible even through the exhaustive
collection of data. Epistemic uncertainty on the other hand is caused
due to lack of knowledge (or data) [27–29]. This type of uncertainty
can be reduced by gathering more data. For the purpose of this study,
the inherent aleatory uncertainties that exist in the microstructure have
not been considered in the uncertainty analysis. The uncertainties in
input parameters in the current model can be reduced through
experiments and physics-based computations, and hence are consid-

Fig. 1. Cross section view of a 3D strain state plot of a microstructure, showing the schematic of a PSB, shearing γ' precipitates, crossing an LAGB and impeded by a twin boundary,
where it forms extrusions representing a preferred site for crack initiation.
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ered to be epistemic in nature.
Input parameters present in the PSB model (discussed in Section 2)

can be categorized into three classes based on the ease of measurability
using experiments (i) physical parameters that can be calculated using
experiments, (ii) physical parameters that cannot be measured using
experiments, and (iii) parameters that are empirical/semi-empirical in
nature, and hence cannot be measured using experiments. In addition
to the aforementioned uncertainties, model discrepancy (or model
bias) exists due to epistemic uncertainties present in the model.

3.1. Physical parameters that can be calculated using experiments

These physical parameters correspond to a distribution of values
due to variation in the experimentally measured values. Uncertainties
observed in these parameters are possibly due to measurement errors,
material variability, sampling volume, or usage of various data collec-
tion techniques. The set of model parameters (within the fatigue model
discussed in Section 2) that fit into this category of uncertainties are
Young's modulus (E), Poisson's ratio (ν), γ' volume fraction (f),
dislocation density (ρ) within a PSB, and PSB width (h). Although
the measurement of E and ν are straight forward using mechanical
testing equipment in a lab, the measurement of the rest of the
parameters (f, ρ, h), which correspond to a lower length-scale, require
advanced experimental setup, for instance the usage of neutron
diffraction experiments for measuring dislocation density (ρ) or the
usage transmission electron microscope to measure the width of a PSB
(h). Due to this reason, a distribution was assigned to each of these
input parameters based on literature review and expert opinion. While
performing GSA (as discussed in Section 4), the influence of all
parameters on the uncertainty of output is calculated, using sensitivity
indices and global sensitivity plots. Table 1 summarizes the distribu-
tion assigned to each of the parameters, and also the source from where
the data was obtained.

3.2. Physical parameters that cannot be easily measured using
experiments

Some of the physical parameters in the model, like the stacking
fault energy (γSFE), anti-phase boundary energy (γ )APBE , energy required

for a dislocation to transmit across a GB (Eslip−GB
γ−MD ) cannot be easily

measured using experiments. Although, the intrinsic stacking fault
energy can be calculated by measuring the distance between Shockley
partials under a transmission electron microscope, unstable stacking
fault energy strictly cannot be measured directly from experiments.
Additionally, the fatigue model considered in the current study takes
into account, the effect of normal stress (σN

α ) on the energy of the PSB
and hence it requires the quantitative dependence of γSFE and γAPBE on
the normal stress acting upon the PSB. These quantities can be
obtained using MD simulations. The potentials used to measure γSFE,

γAPBE and Eslip−GB
γ−MD are still empirical in nature, hence there is some

degree of uncertainty involved with the calculations obtained from
these simulations [13,14]. A Gaussian distribution is assigned to two

Fig. 2. Uncertainty quantification and propagation framework for the fatigue model.

Table 1
List of model input parameters and prior distributions assigned to each of the parameter
for Bayesian uncertainty quantification. Here N͠ represents a normal distribution of a
parameter and is defined using the mean and standard deviation, LN represents a
lognormal distribution of a parameter and is defined using the mean and standard
deviation of the associated normal distribution of the logarithm of the parameter, U͠
represents a uniform distribution of a parameter defined using its upper and lower
bounds.

Type Parameter Distribution Units References

Physical parameters E N͠(210,5) GPa [33]

v N͠(0.307,0.005) – [33]

f N͠(0.4,0.03) – [34,35]

ρ LN(36.3808,1) 1

m2
[36–38]

h N͠(200,50) nm [39,40]

γSFE N͠(128,6.4) mJ

m2
[4,5]

γAPBE N͠(260,13) mJ

m2
[33]

Eslip−GB
γ−MD LN(28.3634, 0.1) mJ

m3
[31,32]

Empirical/ DC U͠(0,1) – –

Semi-empirical
parameters

k U͠(0, ∞) – –

Model discrepancy σ U͠(0, ∞)
hyper-parameter
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parameters, γSFE and γAPBE, with the mean as the calculated value and a
standard deviation equal to 5% of the calculated value.

GBs have a definitive role in localizing and accumulating strain
[32], which is a precursor to crack initiation [55]. The fatigue frame-
work employs additional information about the interactions between
dislocations and specific GB characters, with the value of Eslip−GB

γ−MD . Slip-
GB interactions are very complex and span an infinite parameter space,
so certain simplifying assumptions are made within the model;
specifically, conservative values of the energy barrier for slip-GB
interaction is taken by not accounting for shear stress on the GB plane.
In order to quantify the uncertainty in the values of Eslip−GB

γ−MD , we
consider an example of a slip-twin boundary interaction for various
twin orientations and dislocation types. Specifically, from the work of
Ezaz et al. [30], MD simulations are used to quantify dislocation
transmission and incorporation at a coherent twin boundary (CTB) in
six different classes of slip-twin reactions. The energy barrier for
dislocation transmission through CTB was observed to be proportional
to the magnitude of the residual Burgers vector within the CTB after
the transmission event [31]. Burgers vector increased from 0 (due to
pure cross-slip of a screw dislocation) to 0.53a (with a being the lattice
parameter), the energy barrier increased by approximately 24%, from
187 mJ/m2 to 232 mJ/m2. With the 24% deviation in Eslip−GB

γ−MD taken as
the uncertainty for all types of slip-GB interactions, a log-normal
distribution is used to quantify uncertainty in the values of the GB
energy barriers to slip.

The values of these parameters (γSFE, γAPBE and Eslip−GB
γ−MD ) are sampled

from the assigned distributions to see the propagation of uncertainty
through the model and its effect on fatigue life predictions. This will
help in assessing the sensitivity of these parameters in fatigue life
predictions.

3.3. Parameters that are empirical/semi-empirical in nature

Some parameters in the model are empirical/semi-empirical in
nature. For instance, the first parameter in this category is the degree of
crystallinity (DC) within a PSB. The physical meaning for this para-
meter is associated with the construction of the PSB energy balance,
which sums the contribution of individual dislocations within the PSB.
As additional dislocations are added, the entropy within the PSB
increases and the degree of crystallinity decreases. Physically this
parameter is associated with the latent heat of fusion for the material.
This parameter decreases with increasing number of cycles as the
dislocation density increases. The DC parameter can take values from 0
to 1, with 1 referring to a perfect crystal and values approaching 0 are
analogous to the latent heat of fusion. Hence a uniform distribution is
assigned to this parameter, with 0 and 1 as the lower and upper bounds
of the distribution.

The second parameter is the proportionality constant, k, in Eq. (2),
which is used to calculate the number of dislocations forming an
extrusion at the PSB-GB intersection, next−GB

dis . The PSB model shows an
inverse correlation between extrusion height and fatigue life, the
detailed aspect of which is discussed in Appendix A. The value of
next−GB

dis , and hence the extrusion height at the PSB-GB intersection
scales with the value of k. Measurement of extrusion height within the
bulk of the material is not a trivial task, and this leads to uncertainty in
the parameter, which can be accounted using k. Hence, k accounts for
the uncertainties arising due to missing physics and the simplifying
assumptions that went into defining a stress based empirical expres-
sion for calculating next−GB

dis , Eq. (2). Since next−GB
dis is a strictly positive

quantity, so is k. Therefore, a uniform distribution, U͠(0,∞) is assigned
to k as a prior distribution. Although such a distribution would serve as
a non-informative prior while conducting Bayesian uncertainty quan-
tification, it becomes cumbersome to sample k from U͠(0,∞), for the
purpose of the sensitivity analysis, a technique used to find the set of
most influential parameters. Hence for the purpose of the sensitivity
analysis, the values of k were restricted based on the following two

conditions. First, for the PSB model to be able to predict crack
initiation in the grains, based on Eq. (6), values of k must be restricted.
In other words, if the energy required to form extrusions at the PSB-GB
intersection (which can be identified by the expression,
∑ ∂X (E n bh)i i slip−GB

γ−MD
ext−GB
dis in Eq. (1)) is too high, then extrusions never

form and cracks never initiate. Second, the product, ‘n bext−GB
dis ’ in Eq. (1)

signifies the height of the extrusion formed at the PSB-GB intersection
(as shown in Fig. 1). Since the formation of extrusion at PSB-GB
intersection is a fatigue specific phenomena, it is important that the
aforementioned product must have physically reasonable values. For
instance the height of the extrusion must be much smaller than the
average grain size of the material, based on experimental observations.
In an effort to satisfy the two aforementioned conditions, the values of
k were restricted values between 0 and 2, using a uniform distribution
U͠(0,2), for the purpose of conducting sensitivity analysis.

3.4. Model discrepancy and error in experimental data

In addition to the uncertainty caused by the aforementioned
parameters, epistemic uncertainties occur in the model due to some
simplifying assumptions. For instance, the PSB model assumes that
PSBs exist on all active slip systems within grains (or grain clusters)
within the microstructure, thereby not accounting for the number of
cycles required to form PSBs. In order to address the bias created due
to such assumptions, we introduce a model discrepancy (or model bias)
term, δ. This can be viewed as a model error in predicting fatigue lives
for a given microstructure at a given strain amplitude.

Most importantly, the scatter observed in the fatigue lives (at a
particular strain amplitude) can be partly attributed to the variability in
the microstructure of the material [3–6]. In addition to the inherent
microstructure dependent variability, errors may occur while taking the
values from experiments due to equipment alignment, data acquisition
tolerances, variability in specimen machining, etc. For instance, the
exact determination of when an internal fatigue crack has initiated is
not possible. Due to this reason, an experimentalist relies on a
percentage drop in load to define number of cycles to crack initiation
within a strain controlled fatigue experiment [47]. In this context, the
criteria adopted to decide crack initiation life is more phenomenolo-
gical in nature and hence accounts for errors. Such measurement errors
in experiments are accounted for, by introducing a measurement error
term, e.

If y(xi) represents the fatigue lives obtained from experiments, and
f(xi,θ) represents the fatigue life predictions from the model, they can
be related by the following simple equation:

θy(x )=f(x , )+δ(x ) + ei i i (7)

where xi are experimental conditions (or design parameters) that can
be controlled by an experimentalist. For instance, xi can be the applied
strain amplitude (Δε), temperature or R-ratio. The value of θ repre-
sents the model parameters which cannot be directly controlled or
sometimes cannot even be directly observed by the person conducting
the experiment [43]. All ten parameters discussed in Sections 3.1 - 3.3
comprise the θ vector. In the current model, θ depends on how the
material responds to an applied fatigue load based on the local
microstructure features. Due to fundamental difference between xi
and θ, and the fact that θ cannot be controlled (and in some cases
cannot be measured) during experiments, we take the model discre-
pancy to only depend on the experimental conditions (or design
parameters), xi [8,44]. Assuming that the model discrepancies, δ(x )i ,
are independently and identically distributed, a zero mean Gaussian
random distribution with standard deviation, σ1, represented as σN(0, )͠

1 ,
is assigned to δ (xi). A similar argument is applied to experimental
error term, e, which can also be assigned a Gaussian distribution

σN(0, )͠
2 , with a zero mean and standard deviation, σ2. Since, the

summation of two Gaussian distributions is also a Gaussian distribu-
tion, we replace the two Gaussian distributions with just one Gaussian,
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N σ(0, )͠ . Hence, with the addition of σ into the parameter estimation
problem, we now have a new augmented parameter set, θ{ , σ} or

v f h k{E, , , ρ, , γ , γ , E , DC, , σ}SFE APBE slip−GB
γ−MD . Since there is no in-

formation available about the standard deviation, σ, it is an unknown
hyper-parameter that needs to be inferred using the Bayesian frame-
work. Due to lack of any information for this parameter and based on
the fact that can only take positive values, a uniform prior distribution,
U͠(0,∞), is assigned to this parameter.

4. Parameter selection using global sensitivity analysis (GSA)

Generally, in computational models, different input parameters will
have varying degree of influence on the uncertainty of the model
output. Moreover, a higher parameter dimension will increase the
computational cost of uncertainty analysis. Hence, parameter selection
technique is applied to isolate the most influential parameters in the
model [7]. This is done using GSA, the objective of which is to ascertain
how uncertainty in model outputs can be apportioned to uncertainties
in model inputs, when considered over the entire range of input values
[7,8]. The GSA focuses on the model parameters, θ. In other words, the
hyper parameter, σ , is not considered, because given the extreme
ranges in σ values; it can overshadow the sensitivities in the model
parameters. This consideration is in agreement with the work of
Chiachío et al. [21]. We consider σ in the uncertainty quantification
problem along with other influential model parameters (determined
using GSA). In other words, while doing sensitivity analysis, we ignore
the combination of discrepancy and error terms (δ and e), in order to
rank, just the model parameters with respect to their influence on the
uncertainty of the output. In this current work, we use various existing
graphical tools and techniques [41–43] to select the set of influential
model parameters based on how they influence the fatigue life
calculations. Scatter plots give us a rough idea of how an input
parameter affects the output, they cannot be used to easily assess the
importance of one parameter over the other. If the number of
parameters that we are trying to analyze increase, scatter plots become
cumbersome to analyze. Furthermore, although the well-established
variance based sensitivity indices [8] also provide information on how
various input parameters contribute to the uncertainty in the calculated
output, graphical tools used in this work provide more information
than the variance based sensitivity indices. For instance, once the most
important input has been detected, variance based sensitivity indices
do not provide any information on how much reduction in the range of
uncertainty in the influential parameters is required to achieve a target
reduction of the output variance [42]. Graphical tools maintain a rich
set of information in addition to the sensitivity indices, as they estimate
the contribution of a particular range of input parameter values on the
sample mean [41] or sample variance [42] of the output quantity of
interest. Before using any of the graphical tools for GSA, Monte Carlo
simulations are run, in which all input parameters are varied simulta-
neously, over their entire range, by sampling from distributions listed
in Table 1, except for the model parameter k, which was sampled from
a uniform distribution U͠(0,2). For the purpose of this study, 50,000
Monte Carlo iterations were run. For each Monte Carlo iteration, each
of the model parameter is randomly sampled from its respective
distribution, and the fatigue life is calculated as the output, as
described in Section 2.

In the current work, we use two such graphical plots [41–43] called,
contribution to sample mean (CSM) plot [41] and contribution to
sample variance (CSV) plot [42], which are used to assess the influence
of an input parameter on the sample mean or sample variance of the
output, respectively. Based on the deviation of the CSM (or CSV) curve
of a parameter Xj from the diagonal (e.g. straight line with slope of 1),
its influence on the sample mean (or sample variance) of the output can
be determined. The CSM and CSV plots for all variables in model
parameters in the fatigue model are shown in Fig. 3a and b,
respectively. It should be noted that the two graphical tools (CSM

and CSV), are independent of the type of model (additive/non-
additive/linear/non-linear) being used and just need the data gener-
ated using thousands of Monte Carlo simulations.

In order to ensure that stability exists in the results shown by the
graphical tools, the deviation (measured as the maximum perpendi-
cular distance) of the CSM and CSV curves from the diagonal, and the
evolution of the deviations is plotted against the number of iterations,
and hence the sample size. The stability plots for both CSM and CSV
curves for all the parameters are shown in Fig. 4. From Fig. 4, it is clear
that the deviations stabilize after around 10,000 iterations for all the
three curves.

It can be inferred from the global sensitivity plots shown in Fig. 3,
that the parameters Eslip−GB

γ−MD , k, ρ and h, significantly influence the
output (fatigue life prediction), as these curves deviate from the
diagonal (for CSM and CSV plots in Fig. 3a and b, respectively). The
curves of the non-influential parameters coincide (or are in close
proximity) with the diagonal (for CSM and CSV plots), thus demon-
strating little impact on the overall model output. Additionally, Fig. 4
clearly shows that the deviation between the two curves and their
respective diagonal lines, for the parameters Eslip−GB

γ−MD , k, ρ and h, are
significantly larger and stable over a range of sample sizes. The efforts
of the Bayesian inference will be directed towards quantifying the
uncertainties in the set of influential parameters.

5. Uncertainty quantification using Bayesian inference

We represent the most influential model parameters (along with the
hyper-parameter σ) using a vector, α={Eslip−GB

γ−MD , k, ρ, h, σ}, for use
within the uncertainty quantification framework. The parameters that
are considered relatively non-influential are still needed as the input to
the model, and are assigned to their mean values of their respective
prior distributions (shown in Table 1).

5.1. Bayesian method

Bayesian inference technique is used in updating probabilities, and
more generally, our current state of knowledge of parameters, α, using
observed (or experimental) data, D. The updated probability distribu-
tion (posterior distribution), απ( |D), can be obtained by applying Bayes
theorem as follows:

α
α α

π( |D) =
π(D| )π ( )

π(D)
0

(8)

where απ ( )0 represent our current state of knowledge or prior beliefs on
parameter set α, απ(D| ) represents the likelihood of observing the data
D, given parameter realizations α and π(D) is the marginal density
obtained by integrating the joint density απ( ,D) over all possible values
of α. It can be treated as a normalization factor and this allows us to
proportionally relate the prior, posterior and likelihood distributions as
follows:

α α απ( |D) ∝ π(D| )π ( )0 (9)

The prior distributions of all parameters, απ ( )0 , are listed in Table 1.
Using a statistical model shown in Eq. (7), in which the model errors
are assumed independently and identically distributed, the likelihood

απ(D| ) of observing the data follows a normal distribution [8,10]:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

απ(D| ) = 1

(2πσ )
e

∑ α

2
n
2

−(y −g( ))

2σi=1

n
i

2

2

(10)

where σ is a hyper parameter in the likelihood distribution, which can
be inferred using the fatigue life data {y1, y2,….,yn} collected indepen-
dently from testing n different specimens, and αg( ) represents the
prediction made by the model. Although the non-influential para-
meters are also used in the model, for brevity we just show the set α
(set of influential parameters) as it is those parameters that we are
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trying to estimate. The parameter estimation (or inverse Bayesian
uncertainty quantification) problem in this study is to infer distribu-
tions of all parameters (in the set parameter α), which makes predicted
fatigue lives to be close to experimental fatigue life data, by using
MCMC algorithm [45].

5.2. Markov chain Monte Carlo method for evaluating posterior
densities of model parameters

MCMC uses the attributes of posterior densities (which are in turn
dependent on the likelihood and prior) to specify parameter values that
adequately explore the geometry of the distribution [8]. It is based on a
simple idea of comparing the posterior densities of a candidate point
(or a newly proposed point), α*, with a current location in the state
space α. If the candidate point yields a posterior density greater than
the posterior density at the current location, then the proposed point is
accepted with a probability of one, otherwise the candidate point is
accepted with a probability of r, less than one.

Mathematically, the ratio (r) between the posterior densities
between the candidate point (α*) and the current point (α) can be
represented as:

α
α

α α α | α
α α α α

r= π( *|D)
π( |D)

=
π(D| *)π ( *)π( *)
π(D| )π ( )π( * | )

0

0 (11)

Symmetrical forms of proposal distributions, π(α α* | ) (used to
propose a new candidate point, α*), are preferred to construct posterior
densities, which most likely will have a symmetrical geometry. But in
general, posterior densities of some model parameters can have highly
asymmetrical shapes, in which case using a symmetrical proposal

distribution could lead to long convergence times. Therefore, in this
work we use non-symmetrical proposal distributions which are a more
generic case of sampling from any type of posterior densities and is the
basis of the Metropolis-Hastings (m-H) algorithm [46]. A high level
overview of the component-wise sampling using M-H algorithm is
provided in the Appendix B.

The convergence of the Markov chain is monitored to ensure a
stationary posterior distribution of parameters is obtained. We use a
convergence test for which multiple Markov chains were run in parallel
with different initial values of the parameters [17,48]. If the variances
of a parameter (p) between n chains and within chains are represented
as Bp and Wp, respectively, then an estimate of variance of p, Vp, can be
represented as:

V = n − 1
n

W + 1
n

Bp p p (12)

A convergence test statistic, Rp, can be calculated as:

Fig. 3. Graphical tools to qualitatively understand the influence of various parameters on the mean and variance of output. (a) CSM plot and (b) CSV plot. The data for generating these
plots was acquired from running 50,000 Monte Carlo simulation runs.

Fig. 4. (a) Evolution of maximum deviation (or distance) measured between CSM curves of all the parameters and the diagonal, (b) evolution of maximum deviation (or distance)
measured between CSV curves of all the parameters and the diagonal.

Table 2
Mean, variance, and convergence statistic of the posterior distributions of parameters.

Parameter (units) Mean Standard
deviation

Convergence test statistic
(Rp)

Eslip−GB
γ−MD (mJ

m3 )
2.2×1012 0.13×1012 1.003

k 1.67×10° 1.85×10−1 1.021

ρ ( 1

m2 )
8.68×1015 1.48×1015 1.010

h (nm) 1.91×102 2.41×101 1.040
σ 6.53×103 2.06×103 1.006
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R =
V
Wp

p

p (13)

The value of Rp when calculated for each parameter should be close
to unity to quantitatively ensure convergence. For the full form
expressions of Bp and Wp, please refer to Cross et al. [17].

5.3. Marginal posterior densities of the parameters

Multiple Markov chains are run with different initial guesses of the
parameters, and posterior distributions are extracted after checking for
convergence in each of the chains. The mean, variance, and the
convergence test statistic (Rp) for the posterior distributions of all
parameters are shown in Table 2. The posterior densities for the set of
influential parameters (along with parameter σ) are shown in Fig. 5.

Fig. 5. Prior and posterior densities of (a) PSB width (h), (b) dislocation density, ρ, in log scale, (c) Energy barrier, Eslip−GB
γ−MD , (d) proportionality constant, k and (e) variance hyper-

parameter (σ). It must be noted that the prior density for k and σ is, U͠(0,∞), and hence is coincident with the x-axis.
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All the posterior distributions of the physical and semi-empirical
parameters (like the transmission energy barrier, PSB width, disloca-
tion density) are showing physically reasonable values as indicated in
the literature. For instance, the PSB width (h) is close to the prior
estimate and the typically observed widths of the PSBs are on the order
of hundreds of nanometers [39,40]. Recall, a non-informative flat prior
(which has minimal influence on the posterior distribution of para-
meters) was assigned to the parameters k and σ. The MCMC algorithm
quantified the uncertainties pertaining to those parameters, which is
evident from the unimodal distribution shown in Fig. 5d and e,
respectively.

5.4. Constructing full posterior distributions for all parameters

Instead of using a single large representative volume element
(RVE), which makes it computationally prohibitive to conduct CPFE

simulations, we consider several SEMs, each of which encompasses a
small volume compared to the RVE, but still are sufficiently large to
capture the statistics of the microstructural attributes and the strength
properties (elastic modulus, yield strength, strain hardening behavior
and reverse plasticity upon unloading). In accordance with Niezgoda
et al. [49], we treat an RVE as an ensemble of several SEMs, and
construct the fatigue life distribution by pooling the distributions
obtained by probing the fatigue model through individual SEMs.
Similarly, we construct the full posterior distributions (representing
the ensemble of all SEMs) for parameters, by pooling together the
corresponding posterior densities obtained from the individual SEMs.
Full posterior distribution for each parameter is constructed by
combining multiple posterior distributions, as discussed by
Miroshnikov et al. [50] and Neiswanger et al. [51]. Fig. 6 shows five
different posteriors (for each parameter, obtained by using five
different SEMs) and also a full posterior distribution for each para-

Fig. 6. Plots showing the overlay of sub-posterior distributions of all the parameters obtained using five different SEMs, and also the full posterior distribution obtained from the sub-
posterior distributions.
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meter.

6. Uncertainty propagation

The posterior distributions of uncertainties calculated using
Bayesian inference are propagated through the model, in order to
make robust fatigue life predictions. There are many techniques
available to propagate uncertainties through a model, such as, i)

sampling techniques, ii) perturbation methods, iii) spectral methods,
etc., [8]. In this work we use Monte Carlo based sampling techniques
due to their simplicity in implementation and the fact that the
efficiency of these sampling techniques is independent of the number
of parameters within the model. In each Monte Carlo iteration, the set
of influential model parameters are sampled from their respective full
posterior distributions (shown in Section 5.3) and are fed into the PSB
model to obtain fatigue life distributions for a population of SEMs.
Although within each Monte Carlo simulation, the PSB model calcu-
lates fatigue life on a grain-by-grain basis for the entire SEM, we only
consider the fatigue life of the weakest link grain (the one with least
number of cycles to failure) and hence each Monte Carlo simulation is
associated with one fatigue life data point. Further, it must be noted
that, while propagating uncertainties through the model for each SEM,
the stress and strain attributes derived from CPFE simulations (that go
into the PSB model) are kept the same and only the most influential
parameters are changed by sampling from the full posterior distribu-
tions. For each SEM, the fatigue life distribution generated through
several Monte Carlo simulations is pooled together and for validation
purposes, this data was compared to the 95% confidence interval (CI)
plots generated using experimental fatigue life data. The schematic of
the uncertainty propagation methodology is shown in Fig. 7.

For the purpose of this study, five different SEMs were chosen and
life predictions obtained for each of the five SEMs by propagating the
uncertainties through the PSB model for each of the five microstruc-
tures. Based on the convergence of mean and variance for the output
QoI (fatigue life), it was determined that fifty Monte Carlo iterations
were sufficient to obtain life predictions with equivalent mean and
variance of a much larger sample of fatigue life predictions. Hence, fifty

Fig. 7. Schematic of uncertainty propagation using Monte Carlo sampling. In every Monte Carlo iteration each of the influential parameters is assigned a value (depicted using a solid
red circle) by sampling from their respective posterior distributions and fed into the PSB model along with the microstructural attributes, stress, strain and other necessary state
dependent variable data obtained from the CPFE simulations. For a given microstructure, each Monte Carlo iteration generates one fatigue life data point. The schematic also shows that
the CPFE output is kept the same for all the Monte Carlo iterations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Comparisons of fatigue life predictions obtained for five different SEMs (by
propagating the uncertainties through the PSB model individually for each of the SEM)
with the 95% CI bounds generated from experimental data. The number of cycles to
failure (log scale) is normalized by the maximum experimental value.
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Monte Carlo iterations were run for each of the five SEMs and fatigue
life distributions were obtained for each SEM, individually. It can be
seen from the log-log plot shown in Fig. 8 that the fatigue life
predictions obtained using various SEMs lie within the 95% CI bounds
of the experimental fatigue life data. In addition to visual comparison
for the predictions the 95% CI generated from the experimental fatigue
life data (shown in Fig. 8), Table 3 gives a quantitative overview of the
normalized mean, variance and corresponding 95% CI bounds for
experimental fatigue life data and PSB model predictions using the five
microstructures. The 95% CI bounds (for both mean and variance) of
the fatigue life predictions from the model (obtained for various
microstructures) are overlapping with that of the corresponding 95%
CI bounds obtained from the experimental data. Given the quantified
uncertainties, SEMs representing the microstructure of the material,
along with the heterogeneous stress and strain data obtained from
CPFE as inputs, the model is able to predict the life quite well. The
calculated fatigue life predictions obtained by propagating the quanti-
fied uncertainties through the PSB model shown in Fig. 8 is for a
specific fatigue condition, e.g. a single applied strain range, an
intermediate elevated temperature, R-ratio, frequency, etc.

Furthermore, two-sample Kolmogorov-Smirnov (KS) test was con-

ducted (at 5% significance level) to test the null hypothesis which states
that there is an equality between the predicted fatigue life distributions
(obtained by propagating uncertainties through the PSB model) and
the experimental fatigue life distribution. The outcome of the two-
sample KS test conducted for the fatigue life distributions obtained by
using five different microstructures are shown in Table 4. KS test
accepts the null hypothesis (as the p-value comes out to be greater than
the significance level which is 5%), further affirming that there is good
agreement between model predictions and experimental data.

7. Dependency of model parameters on applied strain

Certain parameters involved in the life prediction model are not just
material dependent, but also depend on the applied strain. Specifically,
the model takes into consideration cyclic slip irreversibilities (please
refer to Appendix A for more details), which are dependent on applied
strain [52,53]. Cyclic slip irreversibilities manifest as extrusions when
PSBs intersect with the surface or GBs. Experimental studies [54,55]
quantified the dependence of the extrusion heights (and heights of slip
steps formed on the surface) with the applied macroscopic strain.
Mughrabi [53] provided a systematic review of studies done to quantify
the cyclic slip irreversibilities (in both single crystals and polycrystals)
and concluded that an inverse correlation exists between accumulated
cyclic slip irreversibilities and fatigue lives. In the current model, the
factor which scales the height of extrusion formed at PSB-GB inter-
section is k, which is also an influential parameter in the model (as
shown in Section 4). Hence, the dependence of the parameter k, on the
applied strain is characterized, thus linking the extrusion height to the
applied macroscopic strain.

For this purpose, the uncertainty in k is quantified at three different
strain amplitudes of interest. Uncertainty quantification was done
using the same procedure described in Section 5, by utilizing the
experimental fatigue life data at the three strains. Only a single SEM is
subjected to three different strain amplitudes, solely for the purpose of

Table 3
Normalized mean, variance and corresponding 95% CI bounds of experimental data and PSB model calculations using various microstructures.

Fatigue life data source Normalized mean(
experiment

μ
μ

) Normalized 95% CI bounds for mean Normalized variance Normalized 95% CI bounds for variance

( lower lound
experiment

μ
μ

, upper lound

experiment

μ

μ
) ( σ

σexperiment
) (σlower lound

σexperiment
,

σupper lound
σexperiment

)

Experiment 1.0000 (0.5676, 1.4324) 1.0000 (0.5967, 2.3277)
SEM 1 0.9133 (0.7759, 1.0507) 1.0332 (0.8511, 1.3077)
SEM 2 0.9412 (0.7956, 1.0868) 1.0726 (0.9203, 1.3032)
SEM 3 1.1198 (0.9619, 1.2777) 1.2731 (1.0823, 1.5510)
SEM 4 1.2399 (1.0810, 1.3988) 1.3041 (1.0929, 1.6095)
SEM 5 0.9975 (0.8185, 1.1766) 1.3477 (1.0911, 1.7325)

Table 4
Outcome of the two-sample KS test conducted (at 5% significance level) to test the
equality between predicted fatigue life distributions (from each of the five micro-
structure) and the experimental fatigue life distribution. The KS test decision was made
by comparing the p-value to the significance level.

Microstructure KS test statistic p-value KS test decision

SEM 1 0.2543 0.7573 Accept null hypothesis
SEM 2 0.1935 0.9572 Accept null hypothesis
SEM 3 0.2431 0.7968 Accept null hypothesis
SEM 4 0.2712 0.6729 Accept null hypothesis
SEM 5 0.2343 0.8381 Accept null hypothesis

Fig. 9. (a) The variation of proportionality constant term (k) and (b) hyper-parameter (σ) with applied strain.
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establishing the dependence of k on the applied strain. Fig. 9a shows
the posterior densities of k at three different strain amplitudes. It is
evident from Fig. 9a that as the applied strain amplitude increases, the
mean value of the posterior distribution of the scaling factor, k, also
increases, indicating that the extrusions grow in size when the strain
amplitude increases. This makes the model consistent with experi-
mental observations [54,55].

In experiments conducted to characterize fatigue life at an applied
strain amplitude, a distinct percentage of load drop is used as a
measure to define number of cycles for crack initiation [47], as it is not
possible to precisely determine when a fatigue crack initiates, especially
when the crack initiates within the bulk of the material. This manifests
as experimental error, e, due to a fundamental difference between the
predictions from the PSB model (number of cycles to fatigue crack
initiation) and the experimental fatigue life data at hand (which is
essentially a combination of number of cycles to crack initiation and
additional cycles required for an initiated crack to incubate corre-
sponding to a specific percentage of load drop). Since the crack driving
forces increase with applied strain amplitude, we postulate that, e (and
hence σ), is inherently dependent on the applied strain amplitude (Δε).
Hence, in order to establish a relation between the hyper parameter, σ,
and applied strain amplitude (Δε), we obtain posterior densities for σ at
three different strain amplitudes of interest (as shown in Fig. 9b). The
posterior density (of σ) corresponding to the highest applied strain

amplitude has the lowest mean value, which can be attributed to the
fact that the load drop percentage is achieved at a faster rate within the
experiments conducted, due to the presence of larger crack driving
forces. Similarly, it takes relatively more cycles to observe a distinct
load drop in experiments conducted at lower applied strain amplitudes,
and hence the posterior densities of σ, at lower strain amplitudes, have
higher mean values.

Further, the quantified uncertainties in k and σ (which are
dependent on the applied strain amplitudes) are propagated through
the PSB model at three different strain amplitudes (Δε , ∆ε1 2 and Δε3),
and fatigue life distributions are obtained at each of the three different
strain amplitudes (using the uncertainty propagation methodology
described in Section 6). For the purpose of comparing fatigue life
distributions at the three different strain amplitudes, we only choose a
single SEM and implement uncertainty propagation at the each of the
three strain amplitudes of interest. Fatigue life predictions obtained at
the three strain amplitudes are shown in Fig. 10. The life predictions
obtained (by the PSB model) at the three strain amplitudes are in
agreement with the limited experimental fatigue life data available at
the three strain amplitudes, overlaid on the fatigue predictions shown
in Fig. 10. For the strain amplitudes (Δε2 and Δε3), since only one
experimental data point is available, a 50% probability of failure was
assigned to that data point.

8. Conclusions

A microstructure and deformation mechanism based fatigue life
prediction model, which uses the stability of a persistent slip band
(PSB) as a criterion for fatigue crack initiation, is validated by using
rigorous sensitivity and uncertainty analysis. Various types of uncer-
tainties were identified in the model parameters based on the ease of
their measurability using experiments (i) physical parameters that can
be measured using experiments, (ii) physical parameters that cannot be
easily measured using experiments, (iii) parameters that are empirical/
semi-empirical in nature, and hence cannot be measured using
experiments. Following parameter identification, global sensitivity
analysis (GSA) was used to identify the set of most influential
parameters in the model, thereby reducing the dimensionality of the
Bayesian uncertainty quantification framework. By using a component-
wise Markov chain Monte Carlo (MCMC) algorithm, which takes into
consideration the experimental fatigue life data and the prior beliefs of
the parameters, posterior densities of the uncertain parameters were
obtained using multiple statistically equivalent microstructures
(SEMs). Uncertainty propagation was applied using a Monte Carlo
framework, in which the uncertainties of the parameters from the full

Fig. 10. Strain-life plots at three different strain amplitudes (Δε1 > Δε > ∆ε2 3). The

number of cycles to failure (log scale) is normalized by the maximum experimental value.

Fig. 11. (a) Evolution of extrusion height with number of cycles, until crack initiation in a specific grain. (b) Influence of extrusion height on fatigue life. The colored contour regions
encompass certain number of data points, which can be inferred from the color bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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posterior distributions were propagated through the model, thereby
calculating the fatigue life prediction in the presence of uncertainties.
Fatigue life predictions obtained by using five different SEMs were
overlaid on the 95% confidence interval plots of the experimental
fatigue data and a good quantitative agreement was observed. Further,
two sample Kolmogorov-Smirnov test showed a good agreement
between fatigue life distributions calculated by the model and those
obtained from the fatigue experiments.
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Appendix A

The PSB model (discussed in Section 2) considers the formation and evolution of extrusions at the PSB-GB intersection (using Eq. (2)). As an
example, the cyclic evolution of an extrusion (until crack initiation) at one of the PSB-GB intersections within an SEM is plotted in Fig. 11a.
Similarly, fatigue lives and extrusion heights (at failure) were extracted for around 1500 grains in 10 different SEMs. From this data, a contour plot
(shown in Fig. 11b) is generated between extrusion height (at PSB-GB intersection) and fatigue life, with the contours encompassing various
number of data points. It can be inferred from Fig. 11b that the fatigue life is inversely proportional to the height of extrusions, which is also in
agreement with observations in the literature [52–55].

Appendix B

The M-H algorithm can be implemented either by proposing a new state for all the parameters (α) at once in a ‘block-wise’ way (by choosing a
proposal distribution which has number of dimensions equal to the number of parameters (α) we are trying to estimate) or by proposing each
parameter αi individually in a ‘component-wise’ way (by using a corresponding univariate proposal distribution assigned for each parameter). For
block-wise sampling, depending on the number of dimensions and the type of parameters, an ideal n-dimensional proposal distribution, which
takes care of all parameters at once, is difficult to identify. If the proposal distribution is not appropriate, a large number of the proposed sample will
be rejected and hence takes a long time for convergence to be achieved. Due to the aforementioned reasons, we use component-wise sampling in the
current work.

A high level overview of the component-wise sampling using M-H algorithm is given below.

i) Set loop counter i=0,
ii) Assign initial values to all the individual parameter in α = {α , α , … α }1 2 n by randomly sampling from their respective prior distributions,

and
iii) Repeat the following steps until i= M (desired number of iterations).

Increment i by 1,
Repeat the following for each parameter,αj, in parameter set α = {α , α , … α }1 2 n ,

Generate a new candidate α*j from |π(α* α )j j
(t−1) ,

Calculate probability p= min
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Sample a random number u from U(0, 1)͠ ,
if u ≤ p, accept proposed state α*j and set α = α*j
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else, set α = αj
t

j
(t−1).
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